
A Fast Sorting Algorithm For A Hypersonic
Rarefied Flow Particle Simulation On The

Connection Machine

Leonardo Dagurn

November 1989

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.44

NASA Cooperative Agreement Number NCC 2-387

Research Institute for Advanced Computer Science
An Institute of the Universities Space Research Association

(NAS&-CR-188903) A FAST SORTING ALGORITHM

FOR A HYPERSONIC RAREFIED FLO_ PARTICLE

SIMULATIONON THE CONNECTION MACHINE

(Research Inst. for Advanced Computer

Science) 20 p CSCL OIA G31oz

N92-I0977

Unclas

0043105

A Fast Sorting Algorithm For A Hypersonic
Rarefield Flow Particle Simulation On The

Connection Machine

Leonard Dagum*

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.44
November, 1989

The datas parallel implementation of a particle simulation for hypersonic rarefied flow described

by Dagum associates a single parallel data element with each particle in the simulation. The

simulated space is divided into discrete regions called "ceils" containing a variable and constantly

changing number of particles. The implementation requires a global sort of the parallel data
elements so as to arrange them in an order that allows immediate access to the information

associated with cells in the simulation. This paper describes a very fast algorithm for performing

the necessary ranking of the parallel data elements and compares the performance of the new
algorithm with that of the microcoded instruction for ranking on the Connection Machine.

Keywords: Connection Machine, Monte Carlo, particle simulation, sorting.

Work reported herein was supported by DARPA via Cooperative Agreement NCC 2-387 between

the National Aeronautics and Space Administration (NASA) and the Universities Space Research
Association (USRA).

*Department of Aeronautics and Astronautics, Stanford University, Stanford, California. Work

performed at Stanford University as as a summer visitor at RIACS.

Introduction

Of increasing interest to NASA and the fluid mechanics community in general is the

development of accurate and efficient methods to treat hypersonic rarefied flow problems.

Hypersonic flows are typically characterised by a freestream Mach number greater than 4

where the Mach number defined as the ratio of fluid speed to local speed of sound. Rarefied

flows are characterised by a large Knudsen number, usually greater than 0.01, where the

Knudsen number is defined as the ratio of the local mean free path for the molecules in

the fluid to a scale dimension in the flow.

Hypersonic rarefied flow conditions are encountered by flight vehicles operating in

the upper atmosphere (altitude 50-150 kin) and are of consequence in the design of future

vehicles such as the National Aerospace Plane (NASP) and Aero-Assisted Space Transfer

Vehicles (ASTV's). The standard method for solving hypersonic rarefied flow problems is

through direct particle simulation methods 1-5, however the huge computational capacity

required to solve even a modest sized problem of practical interest has severely restricted

their use.

Dagum 6 describes the data parallel implementation of a very efficient particle

simulation algorithm developed at Stanford University 7-1° . The implementation associates

one data processor with each individual particle in the simulation, thus the collision and

movement of particles is perfectly load balanced. However, there is a bottleneck associated

with identifying partners for collision. This step requires identifying all the particles within

each cell in a grid, and this is carried out by sorting particles by order of the cell they

occupy and placing all the particles occupying a given cell into a sequence of processors

with contiguous addresses. In Dagum's implementation this was accomplished by using

the Paris rank instruction 11 which is a microcoded version of the data parallel radix sort

described by Hillis and Steele 12. The present paper describes a faster (three times faster)

algorithm for performing this ranking.

Problem Statement

The physical model being simulated consists of a set of particles representative of

a gas moving through a representation of a wind tunnel. Computationally, each particle is

described by an individual data processor which stores information on the physical state

of the particle (i.e. its position and velocity) and the wind tunnel is represented by a grid

of cells through which the particles move and from which macroscopic thermodynamic

quantities (such as pressure or temperature) can be sampled.

All particles occupying a given cell are candidates for collision and pairs are made

of these. In order to make this pairing as well as to sample macroscopic quantities it is

expedient to have all the particles in a cell be represented by a contiguous set of data

processors. On the Connection Machine this means having those virtual processors which

represent the particles in a cell occupy a contiguous set of NEWS addresses 11. The Con-

nection Machine's firmware allows one to map the hypercube addresses of the processors

into a grid topology (called a NEWS grid) of up to 31 dimensions with neighbours on the

grid being physical neighbours in the Connection Machine. This arrangement allows very

fast communication to occur between neighbouring processors on the grid. The NEWS grid

used in this problem is one dimensional, therefore given the starting and ending address

of a cell one can identify all the particles within it (see figure 1). Furthermore, the pair-

ing of collision candidates can proceed as "even with odd", that is all the even-addressed

processors look to their odd neighbour for collision.

The problem then is one of getting the particles into this convenient order. Clearly

if one starts with the particles in order, after one time step particles will have moved from

one cell to another and the order is lost. To regain the order one has to have all the

processors identify the cell that their particle occupies and then sort the particles by order

of this cell position. For this purpose it is necessary to map a two or three dimensional

grid of cells to one dimension. The cell's index when mapped to one dimension, which will

2

be referred to as the "cell index", getsused as the key in the sort.

In using even/odd pairing of collision candidates consideration must be given to

the statistical randomness of the pairs. If there are n particles in cell i, then n(n - 1)/2

different pairings can be made. Using even/odd pairing creates n/2 different pairs out

of the n(n - 1)/2 possible. It is important that the n/2 pairs made at one time step be

statistically independent of the n/2 pairs made in the previous time step. One way of

ensuring this statistical independence is to concatenate a fixed number of random bits to

the end of the cell index and sort on this expanded key 6. In this way the particles no

longer maintain the same relative ordering within a cell and even/odd pairing produces a

sample statistically independent from the previous one.

Two Fundamental Observations

In using a generalized sort to solve this problem one is disregarding an abundance

of information available for designing a more specific and therefore more efficient sort-

ing algorithm. To this end it is useful to make the following observations regarding the

dynamics of the simulation.

(1) On every time step the set begins and ends in an ordered state. The disordering

of the particles occurs through their motion from one cell to another. Furthermore, the

nature of this motion is such that on one time step only about a third of the particles will

change cells, therefore the set is never greatly out of order. In fact it is precisely for this

reason that there is statistical dependence between even/odd pairings in succeeding time

steps unless an effort is made to enhance the disorder.

(2) The motion of the particles is such that to a very high probability if a particle

moves out of its current cell it will move only into its immediately neighbouring cell, that

is, particles do not movemore than one cell width per time step (seefigure 2).

Using these two observationsit is possibleto devisea sort!ng algorithm tailored

to this specific problem which is muchmore efficient than using a generalizedsort.

The New Sorting Algorithm

The new sorting algorithm proceeds in the following manner. Making use of the

first observation, at the beginning of the time step the set is ordered and every processor

is storing a value for its particle's current cell index. The particles then go through their

motion after which a new value for the cell index must be computed. Both the old and

the new values are stored, and now use is made of the second observation. It is convenient

at this point to map the cell index into two dimensions and designate the pre-motion

values by i,j and post-motion values by i',j'. Referring to figure 2 and considering the

second observation it is obvious that a particle beginning in cell i, j has nine different and

mutually exclusive possibilities for its new cell location i',j'. (In three dimensions there

are 27 mutually exclusive possibilities.) Conversely, if at the end of its motion a particle

is occupying cell i',j', there are nine mutually exclusive possibilities for its previous cell

position i,j. Therefore one can divide the particles into nine distinct and ordered sets

based on the nine distinct possibilities for a previous cell location. In other words, because

a particle in cell i',j' has nine mutually exclusive possibilities for its previous cell location

i, j, and because the particles were ordered in their previous cells, it follows that the order

must be preserved in nine mutually exclusive sets. The problem thus has been reduced to

one of identifying these nine ordered sets and merging them into just one set.

Identifying each set is accomplished by simply comparing the previous cell position

to the current one. To merge the sets it is necessary to identify in the lowest numbered

4

processor for every cell in each set, and then enumerate in each set the processorsrep-

resentinga cell (seefigure 3). A one dimensional grid, referred to as the "merging grid"

and distinct from the physical grid of the simulation, is created with size at least 9 times

the number of cells in the simulation. In this way there is a merging grid element for

every cell in each set. A send-with-add 11 from the particles to the new grid is used to get

the number density for every cell in each set, then a scan-with-add 11 is used to create a

running sum of the number density. Each value in the merging grid now is the greatest

rank in the merged list for the particles in the cell it handles.

To get the grid result to the processors representing the particles in an efficient

manner just one processor in each group representing a cell in each set gets the cell's

merged value from the grid, and this value is copied across the rest of the processors in the

group in the set. The lowest numbered processor for every cell in each set was identified

earlier and is used for this purpose.

Figure 3 is a schematic for the patterns of communication. Steps in the algorithm

proceed from left to right across the page. In the first step the nine sets are identified and

the particles in each set are enumerated with the enumeration re-starting at every cell.

This requires nine distinct pairs of scan operations, a pair for each set. The first scan is

necessary to identify cell boundaries in a set and the second scan enumerates the particles

in each cell. The next step of the algorithm requires all processors to send to the merging

grid to create the cell number density. The running sum is then created using a single

scan-with-add. Next, one processor in every cell in every set gets its running sum value

from the merging grid. This is depicted in the figure by an arrow with hems on both ends

thus emphasizing the fact that this operation requires communication in both directions.

Finally, this value is copied across the processors in the cell in each set by using nine

distinct scan-with-copy operations. Now the processors can compute their rank simply

by subtracting their enumeration within the cell (step 1 of figure 3) from the running sum

5

of cell number densities in eachset.

Maintaining Statistical Independence

It was claimed above that maintaining statistical independence of pairings between

time steps is a concern of the simulation. In using the generalized sort it was necessary to

concatenate random bits to the end of the key and order the particles on this expanded

key. The new algorithm maintains elements of randomization in two ways. The first of

these comes about from the manner in which the nine sets are mapped to the merging

grid; the second is a result of the manner in which the merging grid running sum is used

to compute the rank of a particle.

In mapping the nine sets to the merging grid there are 9! different possibilities.

Figure 4 illustrates one such possibility. Consider an arbitrary cell in the simulation and

its nine mutually exclusive sources for particles, here numbered 1 through 9. Each of

these sources has an element associated with it in the merging grid. The nine elements

together account for all the particles in the cell under consideration. It is clear that

these nine sources can be mapped to the merging grid through any permutation of 9. By

using a random, statistically independent permutation on every time step randomness is

introduced to the outcome of the ranking. Once a permutation is chosen it is used in

mapping all the cells at that time step, in other words the permutation is a front end array

that gets applied in mapping the nine sets of particles to the merging grid.

Unfortunately this does not completely remove the concern with maintaining sta-

tistical independence in even/odd pairings between time steps. Empirical measurements

show that one can expect on average two thirds of the particles in the simulation to re-

main in their cells over one time step. Consequently many of the particles in a cell can be

expectedto maintain the sameneighbours in the NEWS grid between time steps.

Consider a particular cell and let f be the fraction of particles which remain in

the cell over the time step. Since the pairing of particles is to proceed as even with odd, it

is most desirable in terms of maintaining statistical independence between pairings if the

particles which exit the cell were not neighbours in the NEWS grid at the beginning of the

time step. If this is true then of the particles which remain in the eeU a certain fraction

are guaranteed to get paired differently from the previous time step. For example say that

only odd numbered particles exit the cell, in the previous time step the pairs were even

with odd but in the new time step the pairs created from the particles which did not exit

the cell are now "even with succeeding even" since the odd particles in between have left

the cell. Therefore in the best case none of the particles which leave the cell are neighbours

and of the particles which remain the fraction _ are neighbours over the time step. In

the worst case all the particles which leave the cell are neighbours therefore of the particles

which remain all are neighbours over the time step. Typically one can expect a result

somewhere between these two extremes.

This might not seem very encouraging, however additional randomization exists

in the method. In computing the rank of a particle, its enumeration from the first step

of the algorithm is subtracted form the greatest rank of particles in both its set and its

cell. This effectively reverses the enumeration of particles, therefore the particles which

did not change cells have their order reversed. Consequently, if in a cell an odd number

of particles do not move out of the cell, the reversing of their order results in a new and

different pairing of these particles. The converse is not true, if the number is even it is

still possible for the pairing of these particles to differ between time steps depending on

the number of particles ranked below them in the cell.

7

When Assumptions Fail

The algorithm has been presented from a physical perspective and in the context

of a generic cell in a generic time step. Two observations of the dynamics of the simulation

were necessary for the algorithm to be valid. It is necessary now to discuss the situations

where these observations do not hold true and the algorithm cannot be used.

The first observation claimed that the particles go from an ordered to a disordered

state through their motion from one cell to another. This is not true at the upstream

boundary of the wind tunnel where new particles must be introduced to maintain the

freestream. However the introduction of new particles can be delayed an arbitrary number

of time steps 6 therefore it is convenient to employ the generalized sort on those time steps

where new particles are introduced and use the fast sort on the other time steps. The

generalized sort also thoroughly shuffles the order of the particles and it is reassuring to

have such a shuffle occurring periodically throughout the calculation.

Using the generalized sort periodically in this manner also is important if the

second observation fails to be true. A crucial assumption for the new sort to be valid is

that particles do not move beyond their immediately neighbouring cell in one time step.

This is true to a very high probability, however given the statistical nature of the simulation

it is impossible to rule out the possibility of a particle not holding to this assumption. The

outcome of such a situation is not catastrophic, however there does result an incorrect

ordering of the particles. If the order is not restored the first observation becomes untrue

and the sort fails on succeeding time steps. Therefore the order continues to deteriorate

until it gets restored via a generalized sort.

Results and Discussion

The algorithm described here was implemented on the 32k processor Connection

Machine Model 2 at the NASA Ames Research Center. The code for it was written fully

in C/Paris and employed in the simulation of hypersonic flow over a wedge. In figure 5 the

performance of the new algorithm is compared to that of the Paris rank instruction. Figure

5a is a plot of the computational time just to rank the particles and does not include the

time for moving particles into their sorted order. One can see from this figure that the

new ranking algorithm is about three times faster than the Paris rank. These times were

measured using just 8k physical processors but are fixed by virtual processor ratio so can

be scaled accordingly for greater numbers of physical processors.

Dagum 6 gives performance results only for the full sort, i.e. he includes the time

to move the particles into their sorted order. Figure 5b compares these times for the old

and new algorithms. The new sort takes about 40% of the time of the old sort. Recall,

however, that the old sort must still be used periodically, typically once every seven time

steps. If this is included into the performance figure then over a full flow solution one can

expect the new sorting algorithm to take 50% of the time of the old sorting algorithm.

The algorithm has been presented and discussed for only two dimensions. The

extension to three dimensions is straightforward but does involve a loss in performance

due to increased communications. In three dimensions there are 27 mutually exclusive sets

instead of 9. The algorithm requires three scan operations per set, in two dimensions these

operations account for 55% of the time to rank. In the worst case, in three dimensions

that fraction of the algorithm would triple in time so overall the new ranking algorithm

would take about 2.1 times longer in three dimensions. This would still be better than the

Paris rank even if the number of cells i,s held fixed. Since in three dimensions one would

expect to have more cells it is reasonable to assume that the Paris rank would also be

slower though not as dramatically so.

9

Conclusions

i

By careful consideration of the physics behind the direct simulation of a hypersonic

rarefied flow, it has been possible to design a very fast algorithm to perform the ranking

of processors necessary in the adaptive domain decomposition of this problem. The new

ranking algorithm is three times faster than the PARIS instruction for ranking and brings

about a significant improvement in performance for the whole simulation.

Acknowledgements

I gratefully acknowledge Professor Donald Baganoff for his guidance and insight

throughout the course of the work.

The work reported here was supported in part by Cooperative Agreement NCC 2-

387 between the National Aeronautics and Space Administration (NASA) and the Univer-

sities Space Research Administration (USRA), by NASA under Hypersonic Training and

Research grant NAGW-965 and by the Air Force Office of Scientific Research under grant

AFOSR 88-0139.

References

1 Bird, G.A., Molecular Gas Dynamics, Oxford University Press, London, 1976.

2 Bird, G.A., "Monte Carlo Simulation of Gas Flows," Annual Review of Fluid Mechanics,

Vol. 10, pp.ll-31, 1978.

3 Bird, G.A., "Monte Carlo Simulation in an Engineering Context," Prog. in Astro. and

10

Aero., Vol. 74, pp. 239-255, 1981.

4 Bird, G.A., "Direct Simulation of Gas Flows at the Molecular Level," Proceedings of the

First World Congress on Computational Mechanics, The University of Texas at Austin,

September 22-26, 1986.

Derzko, N.A., "Review of Monte Carlo Methods in Kinetic Theory," UTIAS Review, No.

35, Univ. of Toronto, 1972.

6 Dagum, L., "Implementation of a Hypersonic Rarefied Flow Particle Simulation on the

Connection Machine," Proceedings-Supercomputing '89, Nov 13-17, 1989, Reno NV.

7 McDonald, J.D., Baganoff, D. "Vectorization of a Particle Simulation Method for Hy-

personic Rarefied Flow," AIAA-88-2735 from AIAA Thermophysics, Plasmadynamics and

Lasers Conference, San Antonio, June 27-29, 1988.

s Feiereisen, W., McDonald, J.D., "Three Dimensional Discrete Particle Simulation of an

AOTV," AIA A-89-1711 from AIAA 24 th Thermophysics Conference, Buffalo, June 12-14,

1989.

9 Woronowicz, M.S., McDonald, J.D., "Application of a Vectorized Particle Simulation

in High-Speed Near-Continuum Flow," AIAA-89-1665 from AIAA 24 *h Thermophysics

Conference, Buffalo, June 12-14, 1989.

10 Baganoff, D., McDonald, J.D., "A Collision-Selection Rule for a Particle Simulation

Method Suited to Vector Compilers," submitted to Physics of Fluids, August 1989.

11 Thinking Machines Corp., The Connection Machine System-Paris Reference Manual

Version 5.0A Field Test, June 1988.

12 Hillis, W.D., Steele, G.L., "Data Parallel Algorithms," Communications of the ACM,

Vol. 29, No.12, pp. 1170-1183, 1986.

11

18Knuth, D.E., The Art of Computer Programming, Vol. 2, 2 na ed., pp. 139-140, Addison-

Wesley, Reading, MA, 1973.

lr Aldous, D., Diaconis, P., "Shuming Cards and Stopping Times," American Mathematical

Monthly, Vol. 93, No. 5, pp. 333-348, 1986.

12

Physical Space

26

cell

27 28 29

paired for collision

3O

Computational Space

Figure 1. Physical and computational space for the particle simulation. Particles oc-

cupying the same cell in physical space are represented by neighbouring processors in

computational space.

13

1

4

7

2 3

/
(

Figure 2. The maximum radius of motion over one time step is to a very high probability

less than one cell width. Particles move only into their immediately neighbouring cells.

14

set

t

?

3

1

set 2

t

?

1

I
t

set

set 2

:ell 0

10

Merging Grid

cell

density

4

3

4

runni

sum

4

7

11

set 1

4

4

4

set 2

7

7

7

set 3

1

?

_3

A

set 3

1

?

3

,4

:ell 0

set 3

tl

II

11

11

Step 1 Step 2 Step 3 Step 4 Step 5

Figure 3. Schematic of the communication patterns in the new sorting algorithm.

15

1 2 3

7 /8 I

arbitrary cell and associated sources

3

6

8

2

9

5

4

7

merging grid

Figure 4. One possible mapping of the nine sources to the merging grid. Each cell has

nine sources for incoming particles which taken for all the cells make up nine mutually

exclusive ordered sets of particles. There are 9! different possibilities for mapping these

sources to the merging grid.

16

3.5

3

_, 2.5

E
2

o

1.5

E
o

r,.) 1

0.5

0
0.5

............... , , , , , i....... _

..i................
:i w

i

J•P i
.J

s S" i

s

............... _................ t................ _................ _.j _1"........... _................ " t................ _................ f...............

s S

!
....................................... _f. : ; ..

: • Z ."

i , i _ K

1 1.5 2 2.5 3 3.5 4 4.5 5

Virtual Processors

Figure 5a. Time to rank with Paris rank (o) and new algorithm (x).

5.5

xl0 5

4 - !

! .'!

--__'_._.. i.................._.: ;...............

• o S

-3 - ... _............ 2" 'q'"..

[.., I?"

"& 2 • : :.. !.o),_.. :

1,5 :................ :.............. X"................ :................ :................ :................ :............ _...............

1!.........

0,5 -" •" " : " ! ! ": : " :

i
I I 1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Virtual Processors

Figure 5b. Time to sort with Paris rank (o) and new algorithm (x).
17

xl0 5

